Correlations of structure and electronic properties from EPR spectroscopy of hydroxylamine oxidoreductase.

نویسندگان

  • M P Hendrich
  • D Petasis
  • D M Arciero
  • A B Hooper
چکیده

Hydroxylamine oxidoreductase (HAO) from the autotrophic nitrifying bacterium Nitrosomonas europaea catalyzes the oxidation of NH(2)OH to HNO(2). The enzyme contains eight hemes per subunit which participate in catalytic function and electron transport. The structure of the enzyme shows a unique spatial arrangement of the eight hemes, subsets of which are now observed in four other proteins. The spatial arrangement displays three types of diheme pairing motifs. At least four of the eight hemes are electronically coupled in two distinguishable pairs and one of these pairs is at the active site of the enzyme. Here, the use of quantitative simulation of the EPR signals allows determination of exchange couplings, and assignments of signals and reduction potentials to hemes of the crystal structure. The absence of any obvious heme-to-heme bonding pathway in the crystal structure suggests that the observed exchange interactions are derived from direct electronic overlap of porphyrin orbitals. This provides evidence for heme pairs which function as biological two-electron redox centers in electron-transfer processes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Active Site of Hydroxylamine Oxidoreductase fromNitrosomonas: Evidence for a New Metal Cluster in Enzymes

Hydroxylamine oxidoreductase (HAO) from Nitrosomonas europaea catalyzes the oxidation of NH2OH to NOz-. The enzyme contains eight hemes per subunit (63 m a ) which participate in catalytic function and electron transport. In the resting ferric state of the enzyme, we find that these hemes can be categorized on the basis of quantitative integer-spin and multifrequency EPR data as follows: (a) Fo...

متن کامل

Membrane tetraheme cytochrome c(m552) of the ammonia-oxidizing nitrosomonas europaea: a ubiquinone reductase.

Cytochrome c(m552) (cyt c(m552)) from the ammonia-oxidizing Nitrosomonas europaea is encoded by the cycB gene, which is preceded in a gene cluster by three genes encoding proteins involved in the oxidation of hydroxylamine: hao, hydroxylamine oxidoreductase; orf2, a putative membrane protein; cycA, cyt c(554). By amino acid sequence alignment of the core tetraheme domain, cyt c(m552) belongs to...

متن کامل

Electronic Structure Investigation of Octahedral Complex and Nano ring by NBO Analysis: An EPR Study

To calculation non-bonded interaction of the [CoCl6]3- complex embedded in nano ring, we focus on the single wall boron-nitride B18N18 nano ring. Thus, the geometry of B18N18 nano ring has been optimized by B3LYP method with EPR-II (Electron paramagnetic resonance) basis set and geometry of the [CoCl6]3- complex has been optimized at B3LYP method with Aldrich’s VTZ basis set and Stuttgart RSC 1...

متن کامل

Demystifying EPR: A Rookie Guide to the Application of Electron Paramagnetic Resonance Spectroscopy on Biomolecules

Electron Paramagnetic Resonance (EPR) spectroscopy, also known as Electron Spin Resonance(ESR) especially among physicists, is a strong and versatile spectroscopic method forinvestigation of paramagnetic systems, i.e. systems like free radicals and most transition metalions, which have unpaired electrons. The sensitivity and selectivity of EPR are notable andintriguing as compared to other spec...

متن کامل

Electronic Structure Investigation of Octahedral Complex and Nano ring by NBO Analysis: An EPR Study

To calculation non-bonded interaction of the [CoCl6]3- complex embedded in nano ring, we focus on the single wall boron-nitride B18N18 nano ring. Thus, the geometry of B18N18 nano ring has been optimized by B3LYP method with EPR-II (Electron paramagnetic resonance) basis set and geometry of the [CoCl6]3- complex has been optimized at B3LYP method with Aldrich’s VTZ basis set and Stuttgart RSC 1...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 123 13  شماره 

صفحات  -

تاریخ انتشار 2001